
12

/k 1/20

Random-number generators

It is important to be able to efficiently generate independent random varia-
bles from the uniform distribution on (0, 1), since:

• Random variables from all other distributions can be obtained by trans-
forming uniform random variables;

• Simulations require many random numbers.

12

/k 2/20

Most random-number generators are of the form:

Start with z0 (seed)
For n = 1, 2, . . . generate

zn = f (zn−1)

and
un = g(zn)

f is the pseudo-random generator
g is the output function

{u0, u1, . . .} is the sequence of uniform random numbers on the interval
(0, 1).

12

/k 3/20

A ‘good’ random-number generator should satisfy the following properties:

• Uniformity: The numbers generated appear to be distributed uniformly
on (0, 1);

• Independence: The numbers generated show no correlation with each
other;

• Replication: The numbers should be replicable (e.g., for debugging or
comparison of different systems).

• Cycle length: It should take long before numbers start te repeat;

• Speed: The generator should be fast;

• Memory usage: The generator should not require a lot of storage.

12

/k 4/20

Linear (or mixed) congruential generators

Most random-number generators in use today are linear congruential genera-
tors. They produce a sequence of integers between 0 and m − 1 according
to

zn = (azn−1 + c) mod m, n = 1, 2, . . .

a is the multiplier, c the increment and m the modulus.
To obtain uniform random numbers on (0, 1) we take

un = zn/m

A good choice of a, c and m is very important.

12

/k 5/20

A linear congruential generator has full period (cycle length ism) if and only
if the following conditions hold:

• The only positive integer that exactly divides both m and c is 1;

• If q is a prime number that divides m, then q divides a− 1;

• If 4 divides m, then 4 divides a− 1.

12

/k 6/20

Multiplicative congruential generators

These generators produce a sequence of integers between 0 and m − 1 ac-
cording to

zn = azn−1 mod m, n = 1, 2, . . .

So they are linear congruential generators with c = 0.

They cannot have full period, but it is possible to obtain period m − 1 (so
each integer 1, ..., m − 1 is obtained exactly once in each cycle) if a and m
are chosen carefully. For example, as a = 630360016 and m = 231 − 1.

12

/k 7/20

Additive congruential generators

These generators produce integers according to

zn = (zn−1 + zn−k) mod m, n = 1, 2, . . .

where k ≥ 2. Uniform random numbers can again be obtained from

un = zn/m

These generators can have a long period upto mk.

Disadvantage:
Consider the case k = 2 (the Fibonacci generator). If we take three consecu-
tive numbers un−2, un−1 and un, then it will never happen that

un−2 < un < un−1 or un−1 < un < un−2

whereas for true uniform variables both of these orderings occurs with pro-
bability 1/6.

12

/k 8/20

(Pseudo) Random number generators:

• Linear (or mixed) congruential generators

• Multiplicative congruential generators

• Additive congruential generators

• ...

How random are pseudorandom numbers?

12

/k 9/20

Testing random number generators

Try to test two main properties:

• Uniformity;

• Independence.

12

/k 10/20

Uniformity or goodness-of-fit tests:

Let X1, . . . , Xn be n observations. A goodness-of-fit test can be used to test
the hyphothesis:

H0: The Xi’s are i.i.d. random variables with distribution function F .

Two goodness-of-fit tests:

• Kolmogorov-Smirnov test

• Chi-Square test

12

/k 11/20

Kolmogorov-Smirnov test

Let Fn(x) be the emperical distribution function, so

Fn(x) =
number ofX ′

is ≤ x

n

Then
Dn = sup

x

|Fn(x)− F (x)|

has the Kolmogorov-Smirnov (K-S) distribution.
Now we reject H0 if

Dn > dn,1−α

where dn,1−α is the 1− α quantile of the K-S distribution.

Here α is the significance level of the test:
The probability of rejecting H0 given that H0 is true.

12

/k 12/20

For n ≥ 100,
dn,0.95 ≈ 1.3581/

√
n

In case of the uniform distribution we have

F (x) = x, 0 ≤ x ≤ 1.

12

/k 13/20

Chi-Square test

Divide the range of F into k adjacent intervals

(a0, a1], (a1, a2], . . . , (ak−1, ak]

Let
Nj = number of Xi’s in [aj−1, aj)

and let pj be the probability of an outcome in (aj−1, aj], so

pj = F (aj)− F (aj−1)

Then the test statistic is

χ2 =

k∑
j=1

(Nj − npj)
2

npj

If H0 is true, then npj is the expected number of the n Xi’s that fall in the
j-th interval, and so we expect χ2 to be small.

12

/k 14/20

If H0 is true, then the distribution of χ2 converges to a chi-square distribu-
tion with k − 1 degrees of freedom as n →∞.

The chi-square distribution with k − 1 degrees of freedom is the same as
the Gamma distribution with parameters (k − 1)/2 and 2.

Hence, we reject H0 if
χ2 > χ2

k−1,1−α

where χ2
k−1,1−α is the 1−α quantile of the chi-square distribution with k−1

degrees of freedom.

12

/k 15/20

Chi-square test for U(0, 1) random variables

We divide (0, 1) into k subintervals of equal length and generateU1, . . . , Un;
it is recommended to choose k ≥ 100 and n/k ≥ 5. Let Nj be the number
of the n Ui’s in the j-th subinterval.

Then

χ2 =
k

n

k∑
j=1

(
Nj −

n

k

)2

12

/k 16/20

Example:

Consider the linear congruential generator

zn = azn−1 mod m

with a = 630360016, m = 231 − 1 and seed

z0 = 1973272912

Generating n = 215 = 32768 random numbers Ui and dividing (0, 1) in
k = 212 = 4096 subintervals yields

χ2 = 4141.0

Since
χ4095,0.9 ≈ 4211.4

we do not reject H0 at level α = 0.1.

12

/k 17/20

Serial test

This is a 2-dimensional version of the chi-square test to test independence
between successive observations.

We generate U1, . . . , U2n; if the Ui’s are really i.i.d. U(0, 1), then the non-
overlapping pairs

(U1, U2), (U3, U4), . . . , (U2n−1, U2n)

are i.i.d. random vectors uniformly distributed in the square (0, 1)2.

• Divide the square (0, 1)2 into n2 subsquares;

• Count how many outcomes fall in each subsquare;

• Apply a chi-square test to these data.

This test can be generalized to higher dimensions.

12

/k 18/20

Permutation test

Look at n successive d-tuples of outcomes

(U0, . . . , Ud−1), (Ud, . . . , U2d−1),

. . . , (U(n−1)d, . . . , Und−1);

Among the d-tuples there are d! possible orderings and these orderings are
equally likely.

• Determine the frequencies of the different orderings among the n d-
tuples;

• Apply a chi-square test to these data.

12

/k 19/20

Runs-up test

Divide the sequence U0, U1, . . . in blocks, where each block is a subse-
quence of increasing numbers followed by a number that is smaller than its
predecessor.

Example: The realization 1,3,8,6,2,0,7,9,5 can be divided in the blocks
(1,3,8,6), (2,0), (7,9,5).

A block consisting of j + 1 numbers is called a run-up of length j. It holds
that

P (run-up of length j) =
1

j!
− 1

(j + 1)!

• Generate n run-ups;

• Count the number of run-ups of length 0, 1, 2, . . . , k − 1 and≥ k;

• Apply a chi-square test to these data.

12

/k 20/20

Correlation test

GenerateU0, U1, . . . , Un and compute an estimate for the (serial) correlation

ρ̂1 =

∑n
i=1(Ui − Ū(n))(Ui+1 − Ū(n))∑n

i=1(Ui − Ū(n))2

where Un+1 = U1 and Ū(n) the sample mean.

If the Ui’s are really i.i.d. U(0, 1), then ρ̂1 should be close to zero. Hence we
reject H0 is ρ̂1 is too large.

If H0 is true, then for large n,

P (−2/
√

n ≤ ρ̂1 ≤ 2/
√

n) ≈ 0.95

So we reject H0 at the 5% level if

ρ̂1 /∈ (−2/
√

n, 2/
√

n)

